Seleção imperdível de brigas em programas de TV

quinta-feira, 29 de setembro de 2011

Quanto tempo uma mulher tem para fazer cu doce?

O tempo que uma mulher tem para fazer cu doce é inversamente proporcional a sua falta de beleza, como podemos observar no gráfico abaixo:


Separação de um casal de mendingos

                                 Fica ali do outro lado da rua então por favor..  ;(

Isso é moto ou ônibus?

A melhor alternativa para quem pegou o ônibus lotado nesta segunda-feira:
A forma mais econômica e perigosa de transportar sua familia.

A Mulher Vampiro Mexicana

Uma mudança extrema de visual



María José Cristerna - Apelidada de “Mulher Vampiro”, a mexicana exibe mundo afora um visual para lá de bizarro: chifres de titânio, pircings variados, dentes afiadíssimos e muitas, mas muitas tatuagens por todo o corpo.

Agora, a figura de 35 anos será imortalizada em cera no Museu Ripley’s Believe It Or Not!

A mãe de quatro crianças foi levada a Orlando (Flórida, EUA) para que o artista responsável pela obra faça o molde. De lá, a peça sairá para museus da franquia do extraordinário em todo o mundo.

María José, que vem de uma família ultrarreligiosa, chegou a estagiar como advogada. Acredita nisso? Imaginem ela num tribunal!!!!

“É meu sonho de vampira ser imortal”, disse ela, segundo reportagem do “Daily Mail”.

A MIB mostra como ela era antes e como ficou depois; Veja a incrível modificação:








Quem Fez Isso Com o Pobre Jacob ?

quarta-feira, 28 de setembro de 2011

Curiosidades sobre a matemática..

quarta-feira, 21 de setembro de 2011
matematica

1 – O Número Mágico
O número 1089  é conhecido como número mágico. Veja por que:
Escolha qualquer número de três algarismos diferentes.  Por exemplo, 875.
Agora escreva este número de trás para frente e subtraia o menor do maior, assim:
875 de trás para frente é 578
Subtraindo o menor (578) do maior (875), temos:
875 – 578 = 297
Agora some este resultado com o seu inverso, assim:
297 + 792 = 1089 -  O NÚMERO MÁGICO!
Faça a experiência com qualquer número de três algarismos diferentes e verá que o resultado será sempre1089.
2 – Curiosidade Com Números De Três Algarismos
Escolha qualquer número de três algarismos. Por exemplo: 234
Agora escreva este número na frente dele mesmo, assim:

234234
Agora divida por 13:
234234 :13 = 18018
Agora divida o resultado por 11:
18018 : 11 = 1638
Divida novamente o resultado, agora por 7:
1638 : 7 = 234
Viu só? O resultado é o numero de três algarismos que você escolheu: 234. Pode experimentar com qualquer outro número de três algarismos. O resultado será sempre o mesmo.
3 – Quanto Vale Um Centilhão?
Você conhece o milhão, bilhão, trilhão, quatrilhão, quintilhão, sextilhão… etc. Mas o maior número aceito no sistema de potências sucessivas de dez, é o centilhão, registrado pela primeira vez em 1852. Representa acentésima potência de um milhão (1.000.000100), ou seja, o número 1 seguido de 600 zeros.
4 – Mágica Com Números
Numa calculadora, digite a sequência de números de 1 a 9, com exceção do 8, assim:
            1 2 3 4 5 6 7 9               gthhhhhhhhhhhhhhhuj0
Agora peça a alguém para escolher o seu número preferido na sequência. Digamos que a pessoa escolheu o 6. Multiplique mentalmente (sem a pessoa perceber) o número escolhido por 9: 9×6=54. Agora, na calculadora, multiplique este resultado por aquela sequência de números que você digitou no começo:
1 2 3 4 5 6 7 9 x 54 = 6 6 6 6 6 6 6 6 6 6 6…
Como se vê, o resultado da multiplicação foi o número 6, escolhido pela pessoa. Aí você diz: “Está aí o seu número preferido!…” Seja qual for o número da sequência escolhido pela pessoa, você deve multiplicá-lo mentalmente sempre por e depois, na calculadora, multiplicar o resultado pela sequência. Por exemplo, se o número escolhido for o 2, você multiplica mentalmente por 9 (9×2=18) e, na calculadora, multiplica a sequência por 18. O resultado será:
1 2 3 4 5 6 7 9 x 18 = 2 2 2 2 2 2 2 2 2 2 2 …
       A mesma coisa acontecerá com qualquer número da sequência que a pessoa escolher. Mas, atenção: o segredo é a multiplicação do número escolhido sempre por 9, que deve ser feita mentalmente, sem que a pessoa perceba.
5 – Data Histórica: 20/02/2002
20 horas e 02 minutos de 20 de fevereiro de 2002 foi um instante histórico. Durante um minuto, houve uma conjunção de números que somente ocorre duas vezes por milênio:
20:02  20/02/2002
Esta é uma simetria que na matemática é chamada de capicua (algarismos que dão o mesmo número quando lidos da esquerda para a direita, ou vice-versa). A raridade deve-se ao fato de que são apenas os algarismos 2 e 0 e se você ler de trás para a frente, dá a mesma coisa:
20 02 20 02 20 02
A última ocasião em que isso ocorreu foi às 11h11 de 11 de novembro de 1111, formando a data 11h11 11/11/1111. A próxima vez será somente às 21h12 de 21 de dezembro de 2112 (21h12 21/12/2112).Provavelmente não estaremos aqui para presenciar. 
Depois, nunca mais haverá outra capicua. Em 30 de março de 3003 não ocorrerá essa coincidência matemática, já que não existe a hora 30.
6 – O Número Pi (p)
Se você pegar qualquer círculo, medir a sua circunferência (perímetro) e dividir o resultado pelo diâmetrodesse círculo, vai encontrar sempre este número:
3,14
            Se você aproximar mais o número, vai achar:
3,14159
            Aproximando mais ainda, achará:
3.14159265358
            Se sua calculadora tiver espaço bastante, você poderá chegar a
3.14159265358979323846264
            Ainda dá para aproximar mais, chegando a:
3.1415926535897932384626433832795028841
            Mais um pouco e você chega a:
3,1415926535897932384626433832795028841971693993751058
            A essa altura, talvez você queira saber até onde vai essa aproximação. Aí, uma surpresa: vai até o infinito, não acaba nunca! Você passaria o resto da sua vida fazendo aproximações e jamais terminaria!Não importa o tamanho do círculo, ele pode ser enorme ou bem pequeno, o resultado será sempre este mesmo número, chamado de “pi” pelos matemáticos e representado pela letra grega p (lê-se “pi”). É a mais antiga constante matemática que se conhece. É um número irracional, com infinitas casas decimais. Em 1997, Y. Kamada e D. Takahashi, da Universidade de Tóquio chegaram a 51.539.600.000 (cinquenta e um bilhões, quinhentos e trinta e nove milhões e seiscentas mil) casas decimais. Só podia ser japonês pra fazer isso…
Related Posts Plugin for WordPress, Blogger...